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Among the many examples of monosubstituted cyclohexanes (i) which have been 

studied, not a single valid case has been reported in which the chair conformation with 

the substituent axial (a) predominates at equilibrium (1). However, when the structure -* 

of a monosubstituted cyclohexane is altered by introduction of a symmetrical trans- 

annular substituent, Z, to give z, the conformational equilibrium constant, K, may 

then be quite different from what it was for J_. 

e a ;r 
A z=l-LJ 

; z =Y,C, Y=C, Y2N+, 0, S, O&3, etc. 

Indeed, for certain combinations of X and Z groups, conformation 2a predominates. 

We wish to report progress toward elucidation of the interactions between X and Z 

which may influence the relative free energies of E and E. 

Compare cyclohexanol (2 ) with the other compounds (z, X = OH) listed in Table I. 

First, observe that introduction of a nonpolar transannular substituent into 5 to give i, 

or k, produces no significant change in the conformational equilibrium in benzene 

solution (2). However, introduction of a strongly electron attracting transannular 

substituent into 3 to give 5, or x, actually reverses the direction of the conformational 

equilibrium in benzene solution; !& and 7a predominate. Weaker electron attracting 

substituents in g, 2, and g produce a smaller change than is found for 2 and 1. 
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Table I 

X-Proton Band Width (W) vs. Symmetrical Transannular Substituent (Z) - 

for Cyclohexanols in Benzene Solution at 33” 

e 

Compound 
i 

i! 

Z 

3 
& s> 

D 
3 
o= 

I-l&= 

S 

I> S 
0 

0 0 

a 

Wi , Hza 

25.3 24 

25.3 24 

25.4 24 

20.2 53 

19.7 56 

23.5 35 

23.3 36 

23.9 32 

AG” 
kcal/molec 

+o. 7 

+o. 7 

+o. 7 

-0.1 

-0.15 

+o. 4 

+o. 4 

+o. 45 

a* 0.2 HZ, except compounds 2, 2, 2, and 2, * 0.5 Hz. See ref. 6. 

b* 38, assuming Wie, 29.6 f 0.1 Hz, and Wia, 12.0 f 0.1 Hz. 

‘* 0.1 kcal/mole, with the above assumption. 

d4-Hydroxycyclohexanone-2, 2,6,6-d, (‘J). 

el, 4-Dioxaspiro[B. 5]decan-8-ol-2,2,3,3,6,6,10,10-d, (E). 
f No absorption attributable to intramolecular hydrogen bonding was 

detected in the infrared spectrum, 0.004 M in Ccl,. Therefore 
nonchair populations are negligible for x arii u, and by analogy, it is 
reasonable to assume nonchair populations are also negligible for 
g-2, g, and 2. 
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Therefore, the relative population of the axial conformation (5) appears to increase 

with the electron attracting ability of the Z group in 3-10. *- 

Second, note that 2 and 2 with tetrahedral Z groups of similar steric size, give 

extremely different conformational equilibria. Furthermore, 1 and !, each with a 

trigonal Z group, give quite different conformational equilibria. Compounds 2 and x, 

with very different Z group geometry, give strikingly similar conformational equilibria. 

Therefore differences in geometry between z and 4-10 appear to play a minor role in _- 

altering relative conformational energies. 

These results suggest that rather than an indirect steric effect, the major 

influence exerted by group Z upon conformational equilibria of ; may be a polar effect. 

One type of polar effect, a transannular dipole-dipole interaction, has been considered 

in the case of chemical equilibration of the stereoisomeric cis- and trans-2-t-butyl- - 

4-hydroxycyclohexanones (2 and g), where lJ (or l.J) may be taken as a model for 

‘Ie, and E (or z), for E (3). 

E R=A=D !? 

!J R = C(CI&),, A = H J? 

E R = C(CH,),, A = D 2 

Rxcellent agreement between the free energy differences is observed for E = E 

(Table I), AG? - 0.15 f 0.08 kcal/mole, and 2 it 2 (3), AG”, - 0.09 f 0.01 

kcal/mole at 33 o in benzene solution. The quantity, (AG” - AG” ) = 0.85 kcal/mole, 
5 :! 

gives an independent measure of the substantial influence a transannular carbonyl 

group exerts upon the conformational equilibrium of the hydroxyl group (3). Calculations 

of dipole-dipole interaction energies, analogous to that reported for 2 6 2 (3), show 

that the quantities (AGO - 
% !, 

AGP), derived from Table I, may be accounted for (to ~a. 

f 0.1 kcal/mole) for the compounds f = 2, ‘7, and !. However, for I9, there is found 

a striking discrepancy which places in doubt any simple correlation between conforma- 

tional energies and Z group-X group transannular dipole-dipole interactions evaluated 

in the manner reported previously (3). For IO, AGfoound is + 0.45 kcal/mole, while 
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AG&d is + 0.95 kcal/mole. Unlike the Z groups in 2-j, the ketal group dipole is 

directed toward the cyclohexane ring (4). The calculated stabilization of E relative 

to E is clearly e observed. Therefore, we conclude that the apparent correlation 

between transannular dipole-dipole interactions and conformational energies for 2-!, 

and for g * 2 (3)) may be fortuitous. There remains an observed correlation between 

the electronattracting ability of Z and conformational energies for 3-10 but the mecha- _ M’ 

nism of electrostatic interaction between X and Z is still a subject for speculation, and 

further study (5). 

In the present work, model compounds E and 2 were used in interpretation of 

the nmr X-proton band widths of 3-10 (6). CC- The band width of the C-4 proton of l3, 

29.6 f 0.1 Hz in benzene solution at 33”, has been taken as Wie; the band width of the 

C-4 proton of l4, 12.0 f 0.1 Hz in benzene solution, has been taken as W ,&’ where 

I= 3-10, Wi = N. W. la 3a + NieWie, and Nia + Nie = 1. Then, the relation, 

N ian=G9. 6*- Wi$?17?6, giGs;e molezactiz of the axial conformer (s) for each 

compound, reported as percent in Table I. The corresponding conformational free 

energies (AGO) are also given in Table I. Although 2 and E were designed as specific 

model compounds for E and ‘Ia, they yield reasonable values of AG” for compounds 2 

and i (1,2). The assumption that Wie and Wia are constants over the range of com- 

pounds 3-10 appears to be a reasonzle and useful approximation. _M 

Am We wish to thank the National Science Foundation and the Merck 
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