
CONFORMATIONAL STUDIES. XI. NMR STUDIES OF TRANSANNULAR SUBSTITUENT EFFECTS IN CYCLOHEXANOLS Robert D. Stolow and Theodore Groom

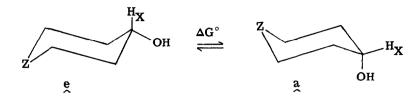
Department of Chemistry, Tufts University, Medford, Massachusetts 02155 Paul D. McMaster

Department of Chemistry, College of the Holy Cross, Worcester, Massachusetts 01610

(Received in USA 13 July 1968; received in UK for publication 15 October 1968)

Among the many examples of monosubstituted cyclohexanes (1) which have been studied, not a single valid case has been reported in which the chair conformation with the substituent <u>axial</u> (a) predominates at equilibrium (1). However, when the structure of a monosubstituted cyclohexane is altered by introduction of a symmetrical transannular substituent, Z, to give 2, the conformational equilibrium constant, K, may then be quite different from what it was for 1.

2 Z =
$$Y_2C$$
, Y=C, Y₂N⁺, O, S, O₂S, etc.


Indeed, for certain combinations of X and Z groups, conformation 2a predominates. We wish to report progress toward elucidation of the interactions between X and Z which may influence the relative free energies of 2a and 2e.

Compare cyclohexanol (3) with the other compounds (2, X = OH) listed in Table I. First, observe that introduction of a <u>nonpolar</u> transannular substituent into 3 to give 4, or 5, produces no significant change in the conformational equilibrium in benzene solution (2). However, introduction of a strongly <u>electron attracting</u> transannular substituent into 3 to give 6, or 7, actually reverses the direction of the conformational equilibrium in benzene solution; 6a and 7a predominate. Weaker electron attracting substituents in 8, 9, and 10 produce a smaller change than is found for 6 and 7.

Table I

X-Proton Band Width (W) vs. Symmetrical Transannular Substituent (Z)

for Cyclohexanols in Benzene Solution at 33°

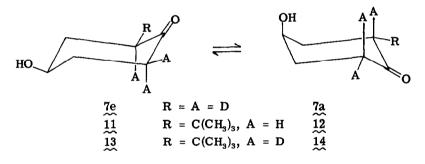
$\begin{array}{c} \text{Compound} \\ \overset{i}{\widehat{}} \end{array}$	Z	$W_{\underline{i}}, Hz^{a}$	$\% \underline{a}^{\mathbf{b}}$	∆G° kcal/mole ^C
3	$_{\rm H}^{\rm H}$ >	25.3	24	+0.7
4	CH ₃ CH ₃	25.3	24	+0.7
5	\triangleright	25.4	24	+0.7
6		20.2	53	-0.1
7 ^{d,f}	0=	19.7	56	-0.15
8	$H_2C =$	23.5	35	+0.4
9	$\left< \begin{array}{c} s \\ s \end{array} \right>$	23.3	36	+0.4
10 ^{e, f}	$\langle \circ \rangle$	23.9	32	+0.45

 a_{\pm} 0.2 Hz, except compounds 3, 4, 5, and 9, \pm 0.5 Hz. See ref. 6.

 b_{\pm} 3%, assuming W_{ie} , 29.6 ± 0.1 Hz, and W_{ia} , 12.0 ± 0.1 Hz.

 c_{\pm} 0.1 kcal/mole, with the above assumption.

 $d_{4-Hydroxycyclohexanone-2, 2, 6, 6-d_4}$ (7).


^e1, 4-Dioxaspiro[4.5]decan-8-ol-2, 2, 3, 3, 6, 6, 10, 10-d₈ (10).

^f No absorption attributable to intramolecular hydrogen bonding was detected in the infrared spectrum, 0.004 M in CCl₄. Therefore nonchair populations are negligible for 7 and 10, and by analogy, it is reasonable to assume nonchair populations are also negligible for 3-6, 8, and 9.

Therefore, the relative population of the axial conformation (2a) appears to increase with the electron attracting ability of the Z group in 3-10.

Second, note that 4 and 6 with tetrahedral Z groups of similar steric size, give extremely different conformational equilibria. Furthermore, 7 and 8, each with a trigonal Z group, give quite different conformational equilibria. Compounds 6 and 7, with very different Z group geometry, give strikingly similar conformational equilibria. Therefore differences in geometry between 3 and 4-10 appear to play a minor role in altering relative conformational energies.

These results suggest that rather than an indirect steric effect, the major influence exerted by group Z upon conformational equilibria of 2 may be a polar effect. One type of polar effect, a transannular dipole-dipole interaction, has been considered in the case of chemical equilibration of the stereoisomeric <u>cis</u>- and <u>trans</u>-2-<u>t</u>-butyl-4-hydroxycyclohexanones (<u>11</u> and <u>12</u>), where <u>11</u> (or <u>13</u>) may be taken as a model for <u>7e</u>, and <u>12</u> (or <u>14</u>), for <u>7a</u> (3).

Excellent agreement between the free energy differences is observed for $\underline{7e} = \underline{7a}$ (Table I), $\Delta G_{\underline{7}}^{\circ}$, -0.15 ± 0.08 kcal/mole, and $\underline{11} = \underline{12}$ (3), ΔG° , -0.09 ± 0.01 kcal/mole at 33° in benzene solution. The quantity, $(\Delta G_{\underline{3}}^{\circ} - \Delta G_{\underline{7}}^{\circ}) = 0.85$ kcal/mole, gives an independent measure of the substantial influence a transannular carbonyl group exerts upon the conformational equilibrium of the hydroxyl group (3). Calculations of dipole-dipole interaction energies, analogous to that reported for $\underline{11} = \underline{12}$ (3), show that the quantities $(\Delta G_{\underline{3}}^{\circ} - \Delta G_{\underline{1}}^{\circ})$, derived from Table I, may be accounted for (to <u>ca</u>. ± 0.1 kcal/mole) for the compounds $\underline{i} = \underline{6}$, $\underline{7}$, and $\underline{8}$. However, for $\underline{10}$, there is found a striking discrepancy which places in doubt any simple correlation between conformational energies and Z group-X group transannular dipole-dipole interactions evaluated in the manner reported previously (3). For $\underline{10}$, $\Delta G_{\underline{60}}^{\circ}$ is + 0.45 kcal/mole, while ΔG_{calcd}° is + 0.95 kcal/mole. Unlike the Z groups in 6-8, the ketal group dipole is directed <u>toward</u> the cyclohexane ring (4). The calculated stabilization of 10e relative to 10a is clearly <u>not</u> observed. Therefore, we conclude that the apparent correlation between transannular dipole-dipole interactions and conformational energies for 6-8, and for 11 = 12 (3), may be fortuitous. There remains an observed correlation between the electron attracting ability of Z and conformational energies for 3-10, but the mechanism of electrostatic interaction between X and Z is still a subject for speculation, and further study (5).

In the present work, model compounds 13 and 14 were used in interpretation of the nmr X-proton band widths of 3-10 (6). The band width of the C-4 proton of 13, 29.6 ± 0.1 Hz in benzene solution at 33°, has been taken as W_{ie} ; the band width of the C-4 proton of 14, 12.0 ± 0.1 Hz in benzene solution, has been taken as W_{ie} ; where i = 3-10, $W_i = N_{ia} W_{ia} + N_{ie} W_{ie}$, and $N_{ia} + N_{ie} = 1$. Then, the relation, $N_{ia} = (29.6 - W_i)/17.6$, gives the mole fraction of the axial conformer (a) for each compound, reported as percent in Table I. The corresponding conformational free energies (ΔG°) are also given in Table I. Although 13 and 14 were designed as specific model compounds for 7e and 7a, they yield reasonable values of ΔG° for compounds 3 and 4 (1,2). The assumption that W_{ie} and W_{ia} are constants over the range of compounds 3-10 appears to be a reasonable and useful approximation.

Acknowledgment: We wish to thank the National Science Foundation and the Merck Foundation for support of this work.

REFERENCES

- E. L. Eliel and M. C. Reese, <u>J. Am. Chem. Soc.</u>, <u>90</u>, 1560 (1968), and refs.
 3-5 therein.
- (2) G. Ransbotyn, R. Ottinger, J. Reisse, and G. Chiurdoglu, <u>Tetrahedron Letters</u>, 2535 (1968), have confirmed this point for 4-2, 2, 6, 6-d₄.
- (3) R. D. Stolow and T. Groom, <u>Tetrahedron Letters</u>, in press (1968).
- (4) N. L. Allinger, S. P. Jindal, and M. A. DaRooge, J. Org. Chem., 27, 4290 (1962).
- (5) See P. E. Peterson, R. J. Bopp, D. M. Chevli, E. L. Curran, D. E. Dillard, and R. J. Kamat, J. Am. Chem. Soc., 89, 5902 (1967).
- (6) N. C. Franklin and H. Feltkamp, <u>Angew. Chem. Internat. Edit.</u>, 4, 774 (1965).